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The quantum mechanical Schrodinger picture of a q-oscillator 
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F-37200 Tours, France 

Received 17 December 1993, in final form 21 March 1994 

Abstract. A q-deformed version of standard quantum mechanics in the coordinate Schradinger 
picture is obtained by replacing the ordinary coordinate derivative by the so-called q-discrete 
derivative as the representative of the momenNm operator. The chosen q-discrete derivative is 
symmetric with respa to the exchange of q and q- ' .  Under the usually adopted assumptions 
a q-deformed Schriidinger equation is derived for a harmonic oscillator. The complete set 
of eigenfunctions can be explicitly constructed as special q-functions and the corresponding 
enera eigenvalues are identical to those obtained~by Biedenham in his pioneering work This 
q-deformed oscillator exhibits a rich novel structure including dynamical symmeay and in the 
limit q -+ 1 it reveals some hitherto unknown features of the harmonic oscillator eigenfunctions. 

1. Introduction 

Several years ago q-analogues of the harmonic oscillator were introduced to conshuct 
realizations of the quantum group SUq(2) (Macfarlane 1989, Biedenharn 1989, Sun and 
Fu 1989). which has appeared as the symmetry group of some exactly soluble models 
in two-dimensional statistical mechanics (Saleur 1989). This procedure generalizes a 
similar construction proposed by Schwinger for the SU(2)  group using ordinary harmonic 
oscillators. The q-oscillators have since become subject to intense investigation and have 
brought a host of new topics into research, for example q-classical mechanics (Shabanov 
1992), q-deformed quantum mechanical potentials (Bonatsos et a1 1991), q-supersymmetric 
systems (Spiridonov 1992), q-non-commutative phase space and q-Euclidean space (Wess 
and Zumino 1990) etc. It is not possible to review these developments here, we can only 
give an incomplete list of indicative references. 

For a better understanding of the type of deformation we wish to propose for the 
Schrodinger picture of quantum mechanics with one degree of freedom, we review 
some recent works, which appear to be relevant to ow proposal namely those dealing 
with realizations of either oscillator operators (i.e. creation and annihilation operators) or 
Heisenberg operators (i.e. position and momentum operators) in wavefunction spaces. Since 
we are not considering the classical limit of quantum mechanics we shall set h / 2 z  = 1 to 
simplify the notation. 

As originally proposed (Biedenham 1989, Macfarlane 1989) the quantum mechanics of 
a q-oscillator is completely described by a q-oscillator algebra (Gilmore 1974) generated 
by the four operators at, a, N and I obeying the commutators: 

aut -qat, = q-N (1) 

[N, a] = -a [ N ,  at]  = at. (2) 

and 
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For q = 1 one recovers the usual oscillator algebra for which ut (respectively U )  is the 
creation (respectively annihilation) operator and N is the number operator. This deformation 
parallels the q-deformation of the SU(2) algebra in which only the commutator between 
the raising and lowering operators has been changed. Mathematically such deformations 
may be understood in terms of Hopf algebras and Yang-Baxter algebras (Yan 1990) as well 
as quantum space analysis (Wess and Zumino 1990). 

An equivalent form of this q-oscillator algebra may be obtained by the substitution 
b = &(q - q-')aqN and bt = @(q - q-')qNat (Macfarlane 1989, Kulish and 
Damakinsky 1990): 

bbt - q'b'b = I (3) 

and 

I N ,  b] -b [ N ,  bt] = bt. (4) 

Curiously the commutator (3) had already been independently introduced by Kuryshkin as 
early as 1980 (Kuryshkin 1980, Janussis eta1 1981). Although non-Fwk representations of 
the q-oscillator algebra exist (Kulish 1991, Rideau 1992, 1993) it is theFock representation 
which is most widely discussed (Biedenham 1989) and its energy spectrum determined. 
There are essentially two classes of Fock representation in wavefunction spaces. 

In the first class the b and bt operators are represented by combinations of the Weyl 
operators of an auxiliairy variable x and its canonical conjugate momentum -id/dx in the 
ordinary quantum mechanical sense. The Hamiltonian is btb up to a constant c-number 
and the operator N is essentially the logarithm of the Hamiltonian. However, there are two 
possible choices known so far for the explicit expressions of b and bt. The first choice 
made by Macfarlane (1989, Shabanov 1992) leads to a ground-state function which is the 
usual shifted Gaussian and excited states represented by the Rogers-Szego polynomials in 
the space of this auxiliary degree of freedom x .  The second choice which was made by 
Askey and Suslov (1993), yields energy eigenstate wavefunctions proportional to the Al- 
Salam Carlitz polynomials. In both cases the energy spectrum relative to the aforementioned 
Hamiltonian is not symmetric under q and q-' exchange and not equal to the Biedenharn 
spectrum (Biedenharn 1989). 

In the second class of Fock representation one deals with relation (1) and U is represented 
by a q-discrete derivative in a variable z ,  i.e. 

. whereas ut is represented by the multiplication by z and N is simply z(d/dz) (Kulish 
and Damakinsky 1990, Floratos 1991, Jurco 1991). We shall come back to this later 
in section 2.4. The energy eigenstate wavefunctions are simply monomials in z and the 
spectrum is identical to the Biedenham spectrum. However, alternative choices for the 
q-discrete derivative exist but are generally not symmetric under q and q-' exchange 
(Floreanini and Vinet 1991, 1993a). 
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A third possibility is to take for a and for at the sum and the difference between z and the 
q-discrete derivative in z: this was done by Li and Sheng (1992) who defined the q-oscillator 
main commutator to be 

10, at]  = MN) (7) 

where &(N) is an arbitrary function of N to be fixed by the chosen physics of the q-oscillator 
and N fulfils the commutation relations (2). The Hamiltonian is defined as (uta+ 1/2&(N)) 
and has a Fock spectrum which depends on the unknown function p .  In fact this realization 
of the q-oscillator algebra is quite close to the realization of a q-deformed Heisenberg 
algebra which is considered in this paper but differs on physical grounds leading to the 
deformation. 

This brings us naturally to q-deformed Heisenberg algebra. For us a Heisenberg algebra 
is an algebra generated by three operators Q, P and Z, which are, respectively, the position, 
conjugate momentum and identity operators. This algebra fixes the quantum kinematics and 
the dynamics is given by the choice of Hamiltonian operator. In the absence of deformation 
one has, as usual, 

[Q, PI = iZ (8) 

and there exist two frameworks in which one may introduce a q-deformation of this 
commntator (8). 

In the first setting, Q and P are elements of the so-called quantum line, the simplest 
case of quantum space. But then one must decide whether Q or P is Hermitian. If the 
momentum P is Hermitian P = Pf then there exists a Hermitian adjoint to Q, i.e. Qt. 
Thus we have the following relations: 

P Q  - q Q P  = -iI 

pQt - q-l Q t p  = _' 14 -1 I 

QQt =qQtQ.  

This choice was made by Schwenk and Wess (1992). But one may just as well take Q = Qt 
and obtain 

(10) 

This was considered by Ubriaco (1993), who also gave the following realization in 
wavefunction space: 

P Q  - q Q P  = -iZ P t Q  - q-'QPt = -iq-'I. 

Q H z P H -iD: H -iq-'D;. (11) 

The dynamics is obtained through the construction of a Hamiltonian which is Hermitian 
and consistent with the Hermicity of either Q or P. Extensions of these considerations 
to higher dimensional quantum spaces may be found in Carow-Watamura et al (1991), 
Carow-Watamura and Watamura (1993), Hebecker and Weich (1992) and Zumino (1991). 

However, it is perhaps more natural to give up the previous quantum structure of the 
real line and directly consider a q-Heisenberg commutator. This was first pioneered by 
Minahan (1990) who introduced 

P Q  -q2QP = -iZ (12) 
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with the realization: Q H z and P H -iD$. An alternative may be to start with q- 
classical mechanics and quantize to obtain a q-Heisenberg commutator: this was done by 
Arafeva and Volovich (19XX), who obtained in this way 

P Q  - q Q P  = -i&Z. (13) 

They give analogous realizations: Both authors 
have constructed Hermitian Hamiltonians and given a few low-lying eigenfunctions. 
Unfortunately if one interprets z as the coordinate of the q-oscillator, the corresponding 
wavefunctions have some unphysical features. Moreover, the eigenvalues are not symmetric 
under q and q-' exchange and they are not of Biedenharn form. 

Finally, as mentioned, before the work of Li and Sheng (1992) may be viewed 
alternatively as q-deformation of the Heisenberg algebra with the commutator: 

Q H z and P H -iJiiD,'. 

[Q, PI = ip(Nq) (14) 

where p(z) is an undetermined function of z (Jannussis 1993). The Hermitian operator N, 
will then be defined by 

[ N , ,  Q] = -iP [N,, PI = iQ. (15) 

The realization in wavefunction space for Q and P is simply Q H z and P H -iDq, 
which is manifestly symmetric under exchange of q and q-'. Unfortunately there is no 
realization of Ns due partly to the unknown function p(z). 

To sum up the situation, we see that the so-called coordinate representation of the q- 
oscillator algebra under different forms does not seem to yield a bona fide Schrodinger 
picture for this q-oscillator. Moreover, several proposals for a q-Heisenberg algebra have 
realizations in function spaces which lead to unwanted aspects for the wavefunctions and 
the spectrum. In this unsatisfactory context, it is the objective of this paper to propose a 
q-deformation of the Heisenberg algebra for which a bona fide Schrodinger picture exists, 
the spectrum of the q-oscillator is the Biedenharn spectrum with a complete set of energy 
eigenfunctions explicitly caculated. 

To this end we reconsider the quantum mechanics with one degree of freedom Q and its 
canonical conjugate momentum P. In the absence of deformation the quantum kinematics 
is given by [Q, PI = il. A Schrdinger picture exists via the realization Q H z and 
P H -iz(d/dz) acting on square integrable wavefunctions of the coordinate z. Any q- 
deformation of this algebra, as we have seen in the work of Li and Sheng, would bring 
about a third operator and the corresponding commutators with Q and P. For Li and Sheng 
this operator is N,, the analogue of the number operator for an oscillator. But, as we shall 
see, it seems more natural to us that this third operator should be rather the scaling generator 
M represented by z(d/dz) in the wavefunction space. The commutators of M with Q and 
P are, in the absence of q-deformation, 

[M, Q] = Q [M, PI -P. (16) 

Now the deformation proposed here consists solely in the replacement of d/dz by the 
q-discrete derivative as the representative of P: 

P H i-'D, 
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This operator i-'Dq exhibits an internal q-symmetry under the exchange q - q-', 
which, as we shall see, will play an important role in the determination of the wavefunction. 
This q-symmetry arises most naturally in the context of statistical mechanics of the six- 
vertex model where the coupling constant is expressed as i(4fq-I) = A, the so-called Lieb 
parameter (Pasquier and Saleur 1990, Kulish and Sklyanin 1991, Aizawa 1993). Appositely 
it tums out that this statistical model is at the origin of the concept of a quantum group, 
therefore it is plausible that q-symmetry would be expected in a physical system. One may 
interpret this new operator assignment for the canonical momentum as some worsening of 
the measurement of the momentum, i.e. the result of the measurement is coarser in a sense 
but it follows a definite prescription controlled by the parameter q which may be attributed 
in turn to the measuring apparatus. 

Since we are keeping the same working framework as that normally used in quantnm 
mechanics (i.e. q = 1) there exists a well-defined inner product in the Hilbert space of 
wavefunctions. This is in contrast to several authors who advocate a new inner product 
defined by a q-integral of the Jackson type (Li and Sheng 1992, Minahan 1990, Gray and 
Nelson 1990). In our opinion there is no clear quantum mechanical interpretation of this 
inner product at present and this is quite clear if one works in quantum spaces (Arafeva 
and Volovich 1991). We feel more confident in keeping the same old infrastructure and 
thii of the q-deformation as induced by a worsening of the momentum measurement 
process. In this respect -iDq as representative of P remains a Hermitian operator. Given 
two wavefunctions @(z) and @(z), the matrix element of P is 

Now performing a change of variable in the last two integrals we anive at 

The other two operators Q and M are evidently Hermitians. 
The paper is organized as follows. In section 2 we examine the consequences of the 

representation of the operator P by a discrete derivative: the ensuing deformation of the 
canonical commutation relation between P and Q as well as between the 'would be' creation 
and annihilation operators of a harmonic oscillator. We then observe the appearance of a 
new operator which may be called the q-deformed identity Zq and this turns out to be 
as important as the Hamiltonian operator. Next we establish that the SU(1, 1) dynamical 
symmetry of the harmonic oscillator is now taken over by the quantum group SUq(l ,  1) 
via the previous deformation (Kulish and Damakinsky 1990). We end section 2 with a 
comparision with the Bargmann approach (Kulish and Damakinsky 1990, Floratos 1991) 
from the point of view of differential operators in wavefunction space. 

Section 3 is devoted to the construction of the q-Schrodinger picture. Our starting point 
is the requirement that the ground-state wavefunction should be annihilated by the 'would 



3834 T T Truong 

be' annihalation operator traditionally constructed out of the P and Q but for q # 1. This 
requirement seems to be generally adopted for two reasons: first it is true for q = 1, second 
the existence of such a vacuum is convenient in constructing Fock spaces for quantum 
field theory. This naturally leads to a q-Schrodinger equation for the eigenfunctions, 
moreover one may view it as a type of q-deformed eigenvalue problem. The complete 
set of eigenfunctions can be conshvcted by solving a recursion relation which appears to 
be a q-symmetric generalization of the recursion relation for the Meixner polynomials of 
the first kind (Chihara 1978). Curiously the three first excited states can be generated by 
repeated application of the 'would be' creation operator on the ground-state wavefunction 
whereas the higher excited states are generated in a different procedure. The eigenvalues 
of this problem turn out to be those found by Biedenharn (1989). Finally taking the limit 
q + 1, we discover some new aspects of the harmonic oscillator wavefunctions and are 
led to some new version of the so-called q-hypergeometric functions that is invariant under 
the exchange of q 4-l. We conclude with a short summary of the highlights obtained 
as well as a list of unsolved problems and topics to be investigated in the future. 

2. Algebraic aspects 

2.1. q-Heisenberg algebra 
The previous prescription leads to a modification of the Heisenberg algebra similar to the 
deformation of the SU(2)  group into a SUq(2) group. By looking at the action of the 
operators Q, P and M on wavefunctions @(z) we can establish that 

[Q. PI = iIq [M, Q] = Q [M, PI = -P. (19) 
Here the operator Zq replaces the identity I and is expressed as 

In this equation and the following ones we use the shorthand notation 

( 4 4  = (4" + q-")/2 

14, = (qn - q-")/G? - 4-9. 
(21) 

(22) 
Incidently one can compute the anticommutator between Q and P: 

We observe that the q-symmetry is manifest in this deformation of the Heisenberg algebra. 
The realization of this q-Heisenberg algebra in wavefunction space has appeared without 
the q-symmetry in Dai etai (1991). 

An immediate consequence is the effect on the Heisenberg uncertainly relation for 
position and momentum in a state described by a wavefunction @(z):  

(AQ)(AP) > $(e, 4@) > $(*, @). (24) 
This is not surprising and is expected since right from the beginning we have more 

'uncertainty' in the momentum measurement. Note that we only make use of conventional 
commutators and not q-commutators between Hermitian operators or observables, thus the 
occurrence of simultaneous but infinitely accurate measurements will not be possible and 
appears even harder than usual. 
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2.2. Alternative form of the q-Heisenberg algebra 

We now introduce the complex linear transformations of Q and P which are normally used 
to define the creation and annihilation operators in the case of an ordinary oscillator: 

CG, = (Q + i P ) / J z  

a+ 9 = (Q - iP ) / Jz .  

The q-Heisenberg algebra is now equivalently defined by the commutators: 

col, 9 4 1  = 19 

[M, 41 = a; [M, 41 = -Uq. 

Again we observe that only one commutator is modified by the q-deformation compared 

A new feature is that the anticommutator between aq and ai may no longer be expressed 

{ai,aq1 = (Pz+ Q2). (28) 

However, the right-hand side of this equation represents precisely the Hamiltonian 
operator H9 of a harmonic oscillator of unit frequency which one obtains by the 
correspondence principle in quantum mechanics. Combining the equations one may write 
equivalently: 

with the original commntators of the harmonic oscillator. 

uniquely in terms of N ;  it will be expressed instead in terms of P and Q: 

These equations show that the two operators H9 and Z9 are on the same footing if one 
considers (ys and ai. This is illustrated by the following sets of commutators, where we 
have set q = exp y : 

coshy(M+$Z) ff: - sinhy(M+iZ)aq) 
cosh 4 y sinh f y 

La:, 41 = 2sinh2(iy) 

4). coshy(M+fZ) sinhy(M+IZ) 
a9 - sinh iy cosh 4 y 

[aq,Z9] =2sinh2(fy)  

As q + 1, both right-hand sides go to zero as expected. Now for H9 we have 

[ H 9 , a i ]  = cosh($y)cosh(y(M+ iZ))ui -sinh(iy)sinh(y(M+ 41) )s  

[Hq,  aq] = sinh( iy)a; sinh (y(M + ;I)) - cosh ($y)cu, cosh ( y ( M  + ;I)). 

(33) 

(34) 

For q + 1 we recover the fact that HI 2: M (Kulish and Damakinsky 1990, Floratos 1991). 
However, Hq and Zq do not commute as will be shown in section 2.3. 
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2.3. Dynamical symmetry 

It is known that the Hamiltonian operator of the ordinary harmonic oscillator may be 
considered as one of the generators of the SU(1,l) group if one constructs the other two 
generators by suitable bilinear combinations of the creation and annihilation operators. It is 
then said that the harmonic oscillator admits the SU(1, I) group as a d y m m l s y m m e t r y  
group. Kulish and Damakinsky (1990) have shown that the q-oscillator of Macfarlane and 
Biedenharn admits, for the dynamical symmetry group, the group SU9(l, 1). Here we show 
that the situation is very similar. Let us introduce the operator L, = Pz - a*; together 
with M and H, they build the following commutators: 

IH9. MI = 4L9 [L9.  MI = 4H9 [H9,  L91 = llJg12M + I I 9 .  (35) 

Defining now the linear combinations: 

we obtain the defining commutators of the quantum group SU9(l, 1): 

[ K i ,  K:] = +K: [K:, KJ = -[2K;I9'. (37) 

The corresponding Casimir operator is given by the usual formula: 

c = [K4'1& + I ] @  - K,-K,I. (38) 

The first commutator [H,, MI is non-trivial, since I9 is an analytic function of M and it 
thus cannot commute with H9. 

2.4. Comments 

Up to this point it seems useful to compare the qdeformation proposed above with the 
q-Bargmann representation of the Heisenberg algebra of a harmonic oscillator: the creation 
and annihilation operators are represented in the space of analytic functions by (Kulish and 
Damakinsky 1990, Floratos 1991): 

a9 H~ D4 01; H z. (39) 

01 9 9  a+ - q%Y,$Y9 = q+N. 

They now fulfil a q-commutator: 

(40) 

This q-commutator is manifestly not q-symmetric and the operator N is defied by the two 
commutators: 

[ N ,  aq] = -4 [ N ,  4 1  =a; (41) 

which are needed in the Schwinger construction of the representation of the SU9(2) group 
with two of such q-oscillators. 

As a consequence one may compute most of the interesting quantities in terms of the 
operator N. 

Olq01; = [N -F I], a&, = [NI9 .  (42) 
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Consequently we obtain the commutator: 

Finally the Hamiltonian operator H9 = a;a9 +a,.; may also be expressed in terms of 
N as 

To make contact with the usual observables Q and P we compute their commutator 
using the linear combinations (9): 

{ N  + 
(45) 

which is of the same form as the commutator of equation (7). The anticommutator between 
Q and P is, however, not expressible in terms of N :  

( Q ,  P )  = -i(a;)' - i(a9)'. (46) 

The commutator of Q and P leads, on the other hand, to the modified uncertainty 
relation in a state described by +(z): 

( A P ) ( A Q )  > Iq@) > ;(+, @) (47) 

which is identical to the previous one given by equation (8). However, in view of the 
linear combinations (9) and the assignments (B), the realizations of P and Q as differential 
operators are given by (compare with Li and Sheng (1992)) 

The uncertainty relation (31) thus takes care of both Q and P built-in measurement 
uncertainties due to the presence of 0,. This is a crucial difference from our consideration 
which starts out with built-in uncertainties for the measurement of the momentum only. It 
turns out, as we shall see in the next section, that the structure of the energy eigenhctions 
is then completely different, although the energy spectrum is the same. We thus recover 
the same relationship between the Schrodinger and Bargmann pictures before deformation 
(4 = 1). 

The MacfarlansBiedenharn oscillator can be described advantageously as a represen- 
tation space where N is diagonal. Such a function space is spanned by states that are 
obtained by repeated application of the q-creation operator on a vacuum state. Coherent 
states can then be defined easily as illustrated in many papers (Chaichian eta1 1990, Kattiel 
and Solomon 1991). 
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3. The q-Schrodinger picture 

3.1. Groundstate wavefunction of the oscillator 

Since the deformation introduced in this paper is due only to 'coarse' momentum 
measurements there is no reason to expect drastic changes in the wavefunctions. In 
particular, in the ground state we expect the wavefunction to retain its Gaussian form 
and we shall also assume, as almost everyone else does, that this ground-state wavefunction 
$o(z) is annihilated by the ~ y p  operator (Macfarlane 1989, Mmahan 1990): 

or,@dz) = 0. (49) 

We recall that when q -+ 1, aq tends to the usual annihilation operator. The previous 
equation is, in fact, a linear functional equation: 

@o(qz) - llo(q-'z) = -z2@ - q-l)@ob(z). (50) 

The solution is, up to a normalization factor, a q-Gaussian function defined by the convergent 
series expansion 

By construction @o(z) is even under space parity and even under q +-+ q-' exchange. 
This functional relation (35) also shows that for z 2 0, +o(z) has no zero and decreases 
monotonically. Thus this is a physically acceptable wavefunction for the oscillator ground 
state, whereas the wavefunction proposed by Minahan (1990) does not have this property. 
Moreover, one may verify directly that @o(z) fulfils the following q8chrodinger equation: 

which may be explicitly written as 

This has the typical form of a q-deformed differential equation where ordinary derivatives 
are replaced by q-discrete derivatives and the 'right-hand side' of the equation contains 
the unknown function with scaled arguments (see, for example, Exton (1983)). Usually 
in mathematics, however, the discrete derivative is not q-symmetric and the 'right-hand 
side' of the equation contains only one scaled argument whereas here qz and q-'z appear 
simultaneously. 

It is clear that at q = 1, @ ~ ( z )  becomes the usual Gaussian function which satisfies the 
ordinary Schrodinger equation for a harmonic oscillator with unit frequency and eigenvalue 
2&0 = 1. 
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3.2. The q-Schrodinger equation and low-lying eigenfinctwns 

The analysis of the ground state leads us to suspect that perhaps the sought q-deformed 
Schmdinger equation for the eigenfunction @n(z) should have the form: 

Hq @" (z) = Iq @" (z) (54) 

where 28" is the corresponding energy eigenvalue. Since $o(z) is annihilated by the aq 
operator it is natural to seek the eigenfunctions of excited states by repeated application of 
the ai on e&), a well known procedure for the usual harmonic oscillator. Surprisingly 
we find that 

@I(z) = (ai)@dz) @ d z )  = c~~)'@o(z) MZ) = (ai)3@~b(~) (55) 

are actually eigenfunctions of the proposed q-Schrodinger equation with the following 
energy eigenvalues: 

j = 1,2,3. I j  + + I q  
2Ej  = - 

[TI, 

Incidently, this formula also gives the ground-state energy if we set j = 0. So it seems 
very natural that formula (40) should be the spectrum of our oscillator although (u~)~@,,(z) 
is not an eigenfunction of the q-Schrodinger equation. Such a spectrum has already been 
found by Biedenharn for his q-oscillator and it is remarkable that one should find the same 
here. Our q-Schrodinger equation may be viewed as a q-deformed eigenvalue problem in 
the sense that we are looking for a set of functions which render Hq proportional not to I ,  
the identity but rather to a deformed identity Iq.  Thus these q-eigenfunctions, if they exist, 
will not be orthogonal in the usual sense but they will obey 

( @ j T  Iq@i) & j .  (57) 

In this respect we may attach to each eigenfunction in addition to its usual norm a q-norm, 
the meaning of which remains to be clarified. Up to now we have kept the probabilistic 
meaning of the usual scalar product and have not, as some authors have proposed, introduced 
a new q-integration scheme which, in our opinion, is hard to interpret in the context of the 
basic principles of quantum mechanics (Gray and Nelson 1990). Finally, since Hq and Iq 
do not commute with each other (see section 2.3), finding the solutions of the proposed q- 
deformed Schrodinger equation is a non-trivial task. In previous studies of the q-oscillator 
one has benefited from the special role of the N or (N,) operator (Bidenham 1989, Li and 
Sheng 1992, Askey and Suslov 1993) which usually commutes with the Hamiltonian but 
this is not the case here. 

3.3. Construction of the eigenfunctions 

We now show that a set of q-eigenfunctions can be explicitly constructed for the q- 
Schrodinger equation. It turns out that, curiously, the first three low-lying functions are 
identical to those given in the section above. The q-Schrodinger equation is invariant 
under space reflection (z --+ -2) as well as under (q +~q- ' )  exchange. Therefore an 
eigenfunction will be characterized by three quantum numbers: 

c = 1.3, labels even, odd eigenfunctions under space parity, 
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a = +, -, labels even, odd eigenfunctions under q-parity, 
n is the energy quantum number for c and a given, it may itself be an even or odd 

integer. 
Thus a solution of the q-Schrodinger equation will have the notation q;(z, a). The 

previously found low-lying eigenfunctions will now appear in the new notation as follows. 

Now the functional form of these eigenfunctions suggests that, for arbitrary 
eigenfunctions, one should look for a power series expression of the type (up to a 
normalization factor): 

where c = 1 +2c* and the coefficients Si@, a) now fulfil the linear homogeneous three-way 
recursion relation: 

I We already know some of these coefficients Sj(0, +) = .$CO, +) = 1, $(I, +) = [2p+& 
and $(I, +) = [2p  + 2 4 .  

Inspection of the recursion relation for large-p behaviour suggests the following ansatz 
for the coefficients: 

3 

where the uj” and uj’ are functions of n,  U ,  c and q. Upon substitution of the ansatz in the 
recursion relation one may set the coefficients of an arbitrary term q*(zn+z-41)p equal to 
zero for j = 0,1,. . . ,oo. 

For j = 0 we find that U; and, by the Biedenharn formula, U; are arbitrary and the 
general eigenvalue is precisely 

For general j > 0 we obtain two-way recursion relations for the U; and U;: 

u j  = -uj”-lq-cFq(n, j ,  c)  

yF I = -yF ,-lqCF& j , ’c )  

where the term F,(n, j ,  c) is given by the q-symmetric expression: 
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The solutions to these two way-recursion relations can be immediately written down as 

The @;(n) is a q-symmetric coefficient given by 

2") ( (2k - 2 + c /2 ] ,  ) 
k=l (2n - 2k + c /2 ) ,  

for j = 1,. . . , n whereas q ( n )  = 1 by construction and $;(n) = 0 for j = n + 1, . . .,ca. 
Inspection shows that we have a remarkable symmetry: 

= 4L-j(4 (67) 

which shall be used to simplify the expressions of S;(n,a) appearing for the moment as 

It is now clear that even q-parity a = + may be realized by the condition ug + U; = 0 
and odd q-parity by U; - U; = 0. We are now in a position to give the complete set of 
coefficients S;(n, a)  which, because of the special symmetry of the @;(n), will depend on 
the even (odd) structure of n = 742s  + 1): 

Si(& + 1, +) Y 2c("S+"~'C k q-~~+' /2)c)s ; (2s + 1) 

s p ,  +) N 7 ( q S C  q - " C ) s p )  
(69) 

where we have defined two coefficients independently of the q-parity: 

~ ( 2  + 1) = C(- l ) j c ,q j~ (2~  + 1)(qRp+c/2)(2r+I-2j) - 4 -(2~+~/2)(2r+]-2j)) 
j = O  

(70) .?-I si(&) = C ( - I ) j c ~ f ( ~ s ) ( q ( 2 p + c l ~ ) ( 2 ~ - ~ j )  + 4 -(zP+c/2)(2r-W) + ( - l )"cgc (~ ) .  
j=a 

Thus it appears that q-parity enters only as a aivial factor whereas space parity leads to 
energy level splitting. Discarding these factors we may consider only reduced wavefunctions 
of the form: 

It is understood that the normalization factors are omitted. 
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3.4. Properties of the eigenfunctions 
The eigenfunctions @;(z) found above enjoy a remarkable property: they can be written as 
a finite weighted sum of scaled ground-state eigenfunctions $l(z). To see this we substitute 
the expressions for the coefficients q ( n )  in the power series defining the @t(z) and reorder 
after exchanging the summation order. We get: 

ZN (72) -s+j-!. e -2r-1+Zj $&+l (2) = e(- l)j'@?(& + 1){4"-'+i@i(42r+'-zj z ) - q  " o ( q  
j=o 

One also encounters a similar structure for eigenfunctions of an oscillator in N -  
dimensional quantum space (Fiore 1992, Carow-Watamura and Watamura 1993). which 
can be alternatively described by a set of infinite number of creation operators acting on 
the ground-state eigenfunction @i(z): 

@i(z) = At(n, c)K(z) (74) 

At(2s+ 1,c) = 2 ( q - ~ q - 1 ) ~ ( - l ) ~ c @ ~ ( 2 s + 1 ) [ ( 2 s + 1  - 2 j ) ( M + $ Z ) ] ,  (75) 

where the creation operators At(,, c) are only functions of the scaling generator M: 
s 

j=O 

These are energy-dependent creation operators: they do not have a universal form. 
Similar operators have been encountered by Fiore (1992) in his investigations of the n- 
dimensional harmonic oscillator in quantum space. Finally there seems to be no set of 
annihilation operators. The simplest non-trivial creation operators are, for c = 1,3, given 
by 

At(l,c) Y t M + 4 1 l q .  (77) 

We may then verify that the action of [M + ; I ] ,  on the ground-state wavefunction is 
the sang as the action of the creation operator on the same ground-state wavefunction 
+;(z): this is the reason why the low-lying eigenfunctions have been obtained by the usual 
procedure of 'creation', but as one goes to higher excited states there is a net deviation from 
this procedure. 

Being a finite sum of n q-Gaussian functions each cigenfunction decreases at large 
values of z as a q-Gaussian function. In principle one should expect that, for given n, there 
exist exactly n zeros for @;(z). This is difficult to prove in general and we can convince 
ourselves with the verification thar the low-lying eigenstates have the required number of 
zeros. 

The first excited state @x(z) = @i(z,  +) by definition (see equation (43)) has a zero at 
the origin z = 0. The second excited state is given by the expression 
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It has only one zero zo on the positive z-axis given by q$o(qzo) = $o(q-'zo). Similarly, 
the thii excited state has an equivalent structure with a zero at the origin and another one 
zo on the positive z-axis as one can see from its expression: 

3.5. The q + I limit and some new aspects of the harmonic oscillator 

In this limit the standard quantum mechanics of the harmonic oscillator is recovered. 
However, the search for eigenstates as power series of the form 

appears rather unsual since it does not factorize out the Gaussian part of the wavefunction. 
Now, since S;(n) + $(n) in the h i t  q + 1, we obtain instead of (44) the following 
recursion relation: 

(81) 

which is, as shown by Meixner (1972), the recursion relation of a class of hypergeometric 
polynomials: 

I ( P  + SC)$+I - PSpC-I = ESpC 

(82) 

These polynomials have been studied under a different form by Gottlieb (Truong and Peschel 
1990), and they are also called Meixner polynomials of the first kind by Chihara (1978). 
Meixner observed that the quantity $(E  - ic)  should be an integer n or, alternatively, E 

should be chosen as 

s; = SP(+(& - p) ,  I ;c,  2) = zFt(-p,  -?(E 1 - 4.); i c ;  2). 

(83) 

which, with c = 1.3, corresponds precisely to the usual quantized energy levels of the 
harmonic oscillator. Moreover, this condition leads to the symmetry property between p 
and n for the hypergeometric polynomials (Meixner 1972): 

1 E = = 2n f ?c 

sp(n) = s d p ) .  (841 

An immediate consequence of this result is the expansion of the Hermite polynomial 
H.(z) in terms of the Meivler polynomials sp(n, i c ,  2):  

where N. is a normalization factor. Comparision with a known formula 

~ " ( z )  = 2"/2exp i z z ~ "  ( z d i )  (86) 
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suggests that parabolic cylinder functions D,(z) may have power series representation in 
terms of Meixner, polynomials of this type. Finally we wouId like to point out a curious 
coincidence: the Meixner polynomials have appeared in the diagonalization of a special class 
of corner transfer matrix in statistical mechanics which has a regularly spaced spectrum just 
as they have appeared here for the harmonic oscillator with an equidistant spectrum (Truong 
and Peschel 1990). 

To give a practical example of what si@) might be, we list below some of them for 
n = 0,1, 2,3, where we set = c’ for simplicity: 

si(0) N constant 

$;cl) N (Zp + c’) 

@) N (pZ + c’p + ic’(1 + c’)) 

$33) N ( p 3 + q c ’ p 2 + ~ ( 2 + 3 c ’ + 3 c n ) p + Q c ‘ ( 2 + 2 c ‘ + c ~ ) ) .  
Thus these $(n) are, in fact, proportional to the hypergeometric polynomials 

~ F t ( - p ,  -n; c’; -2). It is therefore of interest to compare them with the S;(n) before 
setting q 3 1. Again the four first are, using the notation q = expy, 
$CO) N Cconstant 

S,(l)”.sinhy(Zp+c’) 

Sp”(2) ~ Z c o s h y ( 4 p + 2 ~ ‘ )  - (;:;: - :;) ( cosh w‘ 
cosh (2  + c‘) y 

(si;; i;) ( cosh yc‘ Si(3) Y sinh y ( 6 p  + 3c‘) - sinhy(2p + c‘) - 
cosh y (4 + c’) 

Clearly these are not polynomials in p but as q + 1 or, equivalently, y + 0, their lowest 
non-vanishing order in y terms are proportional to the previous s;(n). This fact leads us 
to conjecture that the Si@) are obtainable from a class of q-symmetric hypergeometric 
functions of the type: 

where we have introduced the generalized Pochhammer symbols: 

(b),)j = I 4 , b  + u q . .  . Ia + j - 119 
([b14)j = tb14tb + 11, . . . [b + j - 11,.  

(90) 

(91) 
Then the S;(n) are linear combinations of these q-symmetric hypergeometric functions 
defined with q2 instead of q and the parameter a now has the value n = 2s + 1 which 
terminates the hypergeometric series (89). 
~ “ ~ ( 2 s  + I) = q(2”+”z~1({~/4), [-nl; {-n + I - (c/4)); q-(4~+c)) 

- q+~+~)2 f i ( { c /4 ) ,  [-n]; {-n + 1 - (c/4)]; qUP+‘)). (92) 
A similar expression exists for SE(Zs). The detailed study of these new q-functions is 
unfortunately beyond the scope of this paper and will be treated elsewhere. The important 
point is that the present treatment of the q-oscillator has led to the definition of new q- 
functions different from what one may find in the mathematical literature (Exton 1983, 
Floreanini and Vinet 1993b. Askey and Wilson 1984). Finally, for arbitrary real c the 
wavefunctions @;(z) of equation (55) may be regarded as a q-parabolic cylinder function. 



The quantum mechanical Schrodinger picture of a q-oscillator 3845 

4. Conclusions 

Having observed that since the introduction of the q-commutator by Macfarlane and 
Biedenham most treatments of the q-oscillator have been made in the occupational number 
formalism. we have tried to find an equivalent Schrodinger picture. Our starting point 
is the validity of standard quantum mechanics with its usual probabilistic interpretation. 
We explore only a specific deformation which consists in replacing the usual coordinate 
derivative by the q-symmetric discrete derivative as the representative of the momentum 
operator. In doing so we introduce built-in uncertainties into momentum measurements, 
which leads to a q-deformation. To construct a consistent Schrodinger representation we 
require, as most people do, that the ground-state wavefunction be annihilated by a ‘formal’ 
annihilation operator and then obtain the corresponding q-Schrodinger equation. The 
wavefunctions so obtained seems to have the global features of non-deformed wavefunctions 
and can be expressed in terms of new q-deformed Meixner polynomials of the first kind. 
Remarkably the energy spectrum is the same as in the Macfarlane-Biedenham case. The 
limit of vanishing defmation yields the usual oscillator under novel aspects which suggest 
that the q-deformation is linked to some new version of q-hypergeometric functions. 

It is clear that not every aspect of this qschrodinger picture has been completely treated. 
The physical meaning of the q-orthogonality remains to be established. Energy-independent 
creation and annihilation operators do not seem to exist in a siraightforward manner. It may 
be that their structure hinges on the structure of the contiguous recursion relations of the 
new q-hypergeometric functions, and these have not been constructed yet. Two important 
problems have not been touched upon: the corresponding q-Heisenberg picture and the 
classical limit of the q-oscillator. In the literature one may find numerous works on these 
two subjects but it seems that none of them has considered these two problems in relation 
to a q-Schrodinger picture. We shall be concerned with these topics in the future, in 
particular the construction of coherent states viewed as semiclassical states and hope that 
once these issues are resolved many applications for the q-formalism will bring fruitful 
results in mar,y-body problems (Floratos 1991), statistical physics (Cbaichian et a1 1993) 
and integrable systems (Bogoliubov and Bullough 1992). 
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